
JAVASCRIPT ON RAILS
JS STACKUP

JUNE 14, 2016

2

TheSquareFoot is the marketplace that connects
businesses with the spaces they deserve.

LEASED !

3

Javascript on Rails: Previously

- Monolithic Ruby on Rails application
- Markup in Haml
- Client-side logic in Coffeescript
- Rails asset pipeline

SOURCE

Haml
Sass

Coffeescript
Rails

Asset Pipeline

HTML
CSS

Javascript

OUTPUT

4

Javascript on Rails: Transition

- Thin-server application with rich Javascript presentation layer
- Markup in JSX
- Client-side logic in ES6
- Webpack build system

SOURCE

JSX/ES6
Sass

Rails
Asset Pipeline

HTML
CSS

Javascript

OUTPUT

Webpack react_on_rails

5

Javascript on Rails: Transition

- Documentation is generally written for fresh apps, not so helpful for updating
and maintaining a legacy codebase

- No wrong answers, but there sure are a lot of answers

6

Javascript on Rails: Project Structure

7

Javascript on Rails: Component Structure

- All shared components live in a single flat directory
- Each component has a directory containing all of its assets
- Components only get their own directory if used in multiple places
- Redux actions and reducers scoped by model, may move to Component-

based structure in the future

8

Aside: Favorite bits of ES6/ES2015+

- Arrow functions + class properties for early-binding React event handlers 
 
 
 
 
 

- Destructuring and spread operator offer lots of sugar

9

Javascript on Rails: What went right

- Javascript-based frontend disconnected from Rails backend
- Frontend can use requires/imports, npm
- Server can prerender React
- Modern tooling: Live reload, linting, testing
- CSS Modules makes interacting with legacy styles safer

10

Javascript on Rails: What went wrong

- Transition was not quick and easy
- Complicated build system to debug
- Can’t communicate with Rails, integration with asset-sync
- Prerendering issues with SVG sprites and browser APIs

11

Client side data structure

constraints:
• structure of redux store needs to be independent of view
• need to be able to share state between page transitions/views

12

client side data structure

solution:
• use the relational data model that we have already designed on the

server
• use redux-orm - gives us a basic queryable js object database

13

client/server interaction

traditional options:
• create many endpoints and make multiple requests per view

(RESTful)
• create ad hoc endpoints for views - not DRY (message based)

14

client/server interaction

solution:
• create two endpoints through which client can access entire entire

application (read and write)

15

client/server interaction

1. client makes request to server using structured JSON
2. server knows how to turn request into relational data
3. client knows how to consume relational response and recreate

using redux-orm

16

read endpoint - request/response

17

read endpoint - action/reducer

18

Advantages

• no thinking about data modeling on the client
• allows front end developer to build features with little support from

backend developer

19

Drawbacks

• Front end developer must understand database schema and any
idiosyncrasies that exist on the backend

• client data structure tied to data models on the server

Questions?

Questions?

