
Canary
Geofencing
May 17, 2016

Welcome to Canary!
Canary is the all-in-one
home security system
you control from your
phone.

Meet the Mobile Team

Tiernan Kennedy Michael Klein Andrew Whitcomb Michael Schroeder Sergey Morozov
Team lead iOS iOS Android Android

What is a geofence?
• A geofence is a virtual barrier around a

location or region.

• Geofences are typically used to alert a
user when they have entered or exited
this region.

• Example: The iOS Reminders app
allows you to remind you when you
get home.

• Location services are comprised of:

1. Cellular

2. Wi-Fi

3. GPS

Why does Geofencing
matter to Canary?
Let’s first take a look at
traditional security
system.
• Keypads & pincodes
• A hassle to arm/

disarm
• Most people don't

bother

Canary is a passive
system
• Simple system that

lives in the
background

• Use your location to
arm/disarm your
Canary.

• Works with many
users in a household

The original approach
Use region monitoring!
• Region monitoring

creates a simple
geofence around your
location.

CLCircularRegion *region = [[CLCircularRegion alloc] initWithCenter:CLLocationCoordinate2DMake(<Latitude>,
<Longitude>) radius:<radius> identifier:<indentifier>];

[locationManager startMonitoringForRegion:region];

...

-(void)locationManager:(CLLocationManager *)manager didEnterRegion:(CLRegion *)region {
 //User entered the region
}

-(void)locationManager:(CLLocationManager *)manager didExitRegion:(CLRegion *)region {
 //User exited the region
}

Problems with this
approach
Well, really, it does work, but
not to our standards; it is
only accurate about 80% of
the time.
• OS reliability issues: we never get the event

• Connectivity: we get the event when user has
no internet connection

• Battery: user’s phone is dead when they enter/
exit the region

This seriously harms
user trust...
Most importantly, this
event only fires once,
when the user leaves
their location. If the
Canary never arms:
very serious issue for
the system.

Research and things
to consider
Always need to
consider a user’s
battery life!
• No battery, no location

• Device never changes modes

• Frustrating user experience

Research and things
to consider
CLVisits
• Alerts when a user enters/exits a

location they frequent

• Are delayed up to 15 minutes from
arrival/departure

if ([locationManager respondsToSelector:@selector(startMonitoringVisits)]) {
 [locationManager startMonitoringVisits];
}

...

- (void)locationManager:(CLLocationManager *)manager didVisit:(CLVisit *)visit {
 CLLocation *visitLocation = [[CLLocation alloc] initWithLatitude:visit.coordinate.latitude
longitude:visit.coordinate.longitude];
 //Check if visit location coordinates are relative to users locations
}

Research and things to
consider
Significant Location
Changes (SLCs)

• Low accuracy, low battery usage
[locationManager startMonitoringSignificantLocationChanges];

Research and things
to consider
Active Monitoring (AM)

• Higher accuracy when necessary

locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;
[locationManager startUpdatingLocation];

- (void)locationManager:(CLLocationManager *)manager didUpdateLocations:(NSArray *)locations {
 //Collect user location
}

Putting it all together
Cut the problem into 3
sections
1. The Home region
2. The Active Monitoring

region
3. Everywhere else

Putting it all together
1. Always monitor for

SLCs and Visits
2. Always monitor for

Region changes
3. Use Active Monitoring

when we are close to
a region

Putting it all together
Only enable highest
location services when
we are unsure of
location.

self.locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters;

Ready to test!
Create an endpoint to
upload system
information to:
• Battery level
• Latitude/Longitude
• Wi-Fi/GPS on
• Time
• Accuracy
• Closest location

Ready to test!
• We built a custom web app in flask

called “Geofencer”

• Placed the pins on a Google Map for
analysis

• Run scripts every day on our testers to
check for issues

• Aims:

• Increasing accuracy

• Only turning on GPS chip when
absolutely necessary

• Observing real world behavior to
identify cases to where battery use
could be increased

Not tracking production users!

Conclusions
1. Battery life changes

are negligible
2. System recovers from

missed events
3. Overall improvement

in accuracy of arm/
disarm events

4. Many memes created
and miles walked

Questions?

