
@ Flatiron Health
"Code to Change the World" Dev StackUp

 @ Stack Exchange
Alex Lo - 2016/2/17

TLDR

Flatiron Health is a new kind of business that needs to
experiment quickly and safely. We are rapidly growing our
product suite.

Our team’s mission is to help application teams move quickly.
Here are some tools / practices that have helped (dev-ops-y)

This guy?
Engineering Manager of Developer Infrastructure

@ Flatiron Health since Jan 2015

Agile since 2005, 3+ years in AWS envs

“Infrastructure is now where agility comes from”

@alexlo03 / alo@flatiron.com

Faberge Big Egg Hunt NYC April 2014

Wedgetail Airborne Radar

Mission: To serve cancer patients and our customers by dramatically
improving treatment and accelerating research.

Flatiron Health organizes the world’s oncology information and makes it
useful for patients, physicians, life science companies and researchers.

Today, our software connects community practices and cancer centers on
a common technology infrastructure to address key healthcare
challenges. Our goal is to power a national benchmarking and research
network to transform how cancer care is delivered.

The Problem

5

Our objective is to unlock
real world clinical data for

the remaining 96% of
cancer patients isolated

within fragmented medical
record systems

4% of adult cancer
patients are currently

enrolled in clinical
trials

Poorly Resized Marketing Slides
4:3 -> 16:9: Pretty Much Intractable

Introducing Flatiron Health

250+ employees including:

We come from:

14 Medical oncologists and oncology
nurses

6 Practice administrators

3 Clinical oncology pharmacists

80+ Engineers

Key stats:
Founded: 2012
Fundraising to date: $313MM

Our Mission:
To serve cancer patients and our customers by dramatically improving

treatment and accelerating research

© 2015 Flatiron Health, Inc.

Our Core Software Platform

Industry-leading cloud-based EHR to
easily document and manage patient

care

First-of-its-kind analytics tool to unlock
valuable business, operational and

clinical insights

Integrated practice management and
billing software to file and manage

claims with payers

Patient portal to help providers meet MU
requirements, allow patients to take an

active role in their care

Deep Engineering, Clinical and Oncology Business Expertise

OncoTrials

Value-based Care Initiative

OCM Reporting Integrated Treatment
Pathways & Content

Clinical
Transformation

Assistance

Patient Engagement
Services

Value-based
Analytics

Alternative Payment
Model Design

Strategic Partnerships

Clinical Research Opportunities

2,000
Clinicians

1,000,000
Active Cancer

Patients

230
Cancer Clinics

• Represents largest
real-world oncology
data source

Flatiron Provider Network

A new kind of business
We're not a consumer app - we serve multiple audiences, with multiple requests

Our technology, processes and infrastructure have to support experimentation

We're rapidly growing across the country, and eventually internationally

Google Images: Invention

Developer Infrastructure
Move fast and break things
Move fast with stable infra

● Configuration Management
● Netsec (Connectivity + Segregation)
● Cloud Provider Controls
● Encrypted Volumes
● Secure Shared Storage
● Compute Resource Allocation and Inventory
● Application Stats + Monitoring
● On Call Management and Notifications
● AuthN/AuthZ
● Best Practices (SSL / ELB configs)
● … and friends

Challenges

● Charter: speed up development
● Systems had “grown”
● HIPAA / strong security concerns
● Were hosted in a cloud provider everyone hated

Our plan to speed up development
● Migrate to a platform that allows more automation (Cloud X to AWS)
● Make configuration drift a thing of the past
● Make infrastructure workflows easier in AWS (carrot)

○ Example: create self-configuring hosts

● Allow developer self service via infrastructure as code
○ Example: network configuration

● Culture of visibility
○ Chat integrated alerts
○ Jenkins as watchdog
○ Chatops

Drift Makes Life Hard
“Can I run Chef client?”
“Uh, maybe?”

● When things are growing, a hybrid of
configuration management and manual approaches

● Ideally running CM should always be safe
● Reconciliation is time consuming when there is drift
● Implications:

○ Run CM often
○ Make the creation of drift visible when it cannot automatically be

corrected
● Applies to both host and cloud configuration “Why is this port open??”

Carrot
Improving Creating New Virtual Machines

Previous Workflow
Dev

Provision
X Cloud

Create

Pre-reg
Kerberos

IPA Server Host

Run Chef

Complete reg

Encrypt FS

DONE

Attach
Disks

Not pictured:
multiple user
prompts, chances
for user error, some
other wrinkles and
edge cases

Enter Ansible
Dev AWS EC2Create

Script

Pre-reg
Kerberos

IPA Server

Host

DONE

Cloud init

git

CloneAnsible
Pull

Base
Infra
Layer

Complete
reg

Slack alert

Specific
Hostconfig

After the script launch,
no human touch points
until machine
announces it is ready

Chatops
In our old cloud host, bringing up new servers was time consuming, therefore
engineers avoided doing it

“doc”

Self Serve Infrastructure

● “Infrastructure as Code” is not a new idea
○ Make “what is” transparent
○ Make changes auditable, historical
○ Allow change proposals via Pull Requests / code diffs
○ Assert that infrastructure is currently complying with

what we think it should be
■ Avoid configuration management “drift”

● We’ve found Ansible + Jenkins to work well for us

Infrastructure as Code

Cloud Configuration

● Network Security Groups
● ELBs
● S3 Buckets
● IAM Policies

Machine Configuration

● VM definitions (EC2 size, etc)
● Software configuration (nginx, etc)

Security Group Example

- name: jenkins security group
 ec2_group:
 name: jenkins
 description: jenkins
 vpc_id: "{{ vpc_id }}"
 region: us-east-1
 rules:
 - proto: tcp
 from_port: 8080
 to_port: 8080
 group_id: "{{ sg_jenkins_elb.group_id }}"
 rules_egress:
 - proto: all
 cidr_ip: 0.0.0.0/0

Infrastructure as Code
Security Groups

“Don’t trust and verify” > “Trust but verify”
Jenkins as the enforcer

Allow read access to infrastructure and code, can tell us when things are awry

Security Group Workflow
1. Engineer proposes Security Group changes in code diff
2. Security and/or our team approves after review
3. Engineer merges to master
4. Drift detected (code is ahead of cloud conf)

Mechanism: `ansible-playbook --check` - anything updated?

5. Admin acts to run playbook
6.

Base Software Configuration and Drift
“One touch” hosts all come equipped with continuously running configuration
management of “base” level concerns

Decouples our team from specifics of how teams would like to administer / evolve
their hosts

Example: when we added splunk universal forwarder to all machines, we didn’t
require action from anyone

Thundering Herd

Thundering git herd (~ 150 hosts)

run ansible-pull every ten minutes on the last ipv4 octet % 10
- name: ansible-pull cron
 cron:
 name: ansible-pull
 minute: "{{ ansible_eth0['ipv4']['address'].split('.')[3] | int % 10 }}-59/10"
 job: ...

Thanks to

Thanks + Ops Drinks

Thank you Stack Exchange and Dev StackUp

I’m organizing drinks with ops teams to cross pollinate ideas
and experience

We are hiring
alo@flatiron.com

